References
1. Phukan, B.C., R. Roy, I. Gahatraj, P. Bhattacharya, and A. Borah, Therapeutic considerations of bioactive compounds in Alzheimer’s disease and Parkinson’s disease: Dissecting the molecular pathways. Phytother Res, 2023. 37(12): p. 5657-5699 https://doi.org/10.1002/ptr.8012.
2. Heavener, K.S. and E.M. Bradshaw, The aging immune system in Alzheimer’s and Parkinson’s diseases. Semin Immunopathol, 2022. 44(5): p. 649-657 https://doi.org/10.1007/s00281-022-00944-6.
3. Kumar, S., L. Goyal, and S. Singh, Tremor and Rigidity in Patients with Parkinson’s Disease: Emphasis on Epidemiology, Pathophysiology and Contributing Factors. CNS Neurol Disord Drug Targets, 2022. 21(7): p. 596-609 https://doi.org/10.2174/1871527320666211006142100.
4. Costa, H.N., A.R. Esteves, N. Empadinhas, and S.M. Cardoso, Parkinson’s Disease: A Multisystem Disorder. Neurosci Bull, 2023. 39(1): p. 113-124 https://doi.org/10.1007/s12264-022-00934-6.
5. Vrijsen, S., M. Houdou, A. Cascalho, J. Eggermont, and P. Vangheluwe, Polyamines in Parkinson’s Disease: Balancing Between Neurotoxicity and Neuroprotection. Annu Rev Biochem, 2023. 92: p. 435-464 https://doi.org/10.1146/annurev-biochem-071322-021330.
6. Moradi Vastegani, S., A. Nasrolahi, S. Ghaderi, R. Belali, M. Rashno, M. Farzaneh, and S.E. Khoshnam, Mitochondrial Dysfunction and Parkinson’s Disease: Pathogenesis and Therapeutic Strategies. Neurochem Res, 2023. 48(8): p. 2285-2308 https://doi.org/10.1007/s11064-023-03904-0.
7. Jomova, K., R. Raptova, S.Y. Alomar, S.H. Alwasel, E. Nepovimova, K. Kuca, and M. Valko, Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases and aging. Arch Toxicol, 2023. 97(10): p. 2499-2574 https://doi.org/10.1007/s00204-023-03562-9.
8. Trist, B.G., D.J. Hare, and K.L. Double, Oxidative stress in the aging substantia nigra and the etiology of Parkinson’s disease. Aging Cell, 2019. 18(6): p. e13031 https://doi.org/10.1111/acel.13031.
9. Hassanzadeh, K. and A. Rahimmi, Oxidative stress and neuroinflammation in the story of Parkinson’s disease: Could targeting these pathways write a good ending? J Cell Physiol, 2018. 234(1): p. 23-32 https://doi.org/10.1002/jcp.26865.
10. Pickrell, A.M. and R.J. Youle, The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson’s disease. Neuron, 2015. 85(2): p. 257-73 https://doi.org/10.1016/j.neuron.2014.12.007.
11. Hou, X., J.O. Watzlawik, F.C. Fiesel, and W. Springer, Autophagy in Parkinson’s Disease. J Mol Biol, 2020. 432(8): p. 2651-2672 https://doi.org/10.1016/j.jmb.2020.01.037.
12. Murakami, S., Y. Kusano, K. Okazaki, T. Akaike, and H. Motohashi, NRF2 signalling in cytoprotection and metabolism. Br J Pharmacol, 2023 https://doi.org/10.1111/bph.16246.
13. Li, J., C. Xu, and Q. Liu, Roles of NRF2 in DNA damage repair. Cell Oncol (Dordr), 2023. 46(6): p. 1577-1593 https://doi.org/10.1007/s13402-023-00834-5.
14. George, M., M. Tharakan, J. Culberson, A.P. Reddy, and P.H. Reddy, Role of Nrf2 in aging, Alzheimer’s and other neurodegenerative diseases. Ageing Res Rev, 2022. 82: p. 101756 https://doi.org/10.1016/j.arr.2022.101756.
15. Suzuki, T., J. Takahashi, and M. Yamamoto, Molecular Basis of the KEAP1-NRF2 Signaling Pathway. Mol Cells, 2023. 46(3): p. 133-141 https://doi.org/10.14348/molcells.2023.0028.
16. Ulasov, A.V., A.A. Rosenkranz, G.P. Georgiev, and A.S. Sobolev, Nrf2/Keap1/ARE signaling: Towards specific regulation. Life Sci, 2022. 291: p. 120111 https://doi.org/10.1016/j.lfs.2021.120111.
17. Zhang, W., C. Feng, and H. Jiang, Novel target for treating Alzheimer’s Diseases: Crosstalk between the Nrf2 pathway and autophagy. Ageing Res Rev, 2021. 65: p. 101207 https://doi.org/10.1016/j.arr.2020.101207.
18. Brandes, M.S., J.A. Zweig, A. Tang, and N.E. Gray, NRF2 Activation Ameliorates Oxidative Stress and Improves Mitochondrial Function and Synaptic Plasticity, and in A53T α-Synuclein Hippocampal Neurons. Antioxidants (Basel), 2021. 11(1) https://doi.org/10.3390/antiox11010026.
19. Jiang, T., B. Harder, M. Rojo de la Vega, P.K. Wong, E. Chapman, and D.D. Zhang, p62 links autophagy and Nrf2 signaling. Free Radic Biol Med, 2015. 88(Pt B): p. 199-204 https://doi.org/10.1016/j.freeradbiomed.2015.06.014.
20. Komatsu, M., p62 bodies: Phase separation, NRF2 activation, and selective autophagic degradation. IUBMB Life, 2022. 74(12): p. 1200-1208 https://doi.org/10.1002/iub.2689.
21. Veenstra, J.P. and J.J. Johnson, Rosemary (Salvia rosmarinus): Health-promoting benefits and food preservative properties. Int J Nutr, 2021. 6(4): p. 1-10.
22. Satoh, T., D. Trudler, C.K. Oh, and S.A. Lipton, Potential Therapeutic Use of the Rosemary Diterpene Carnosic Acid for Alzheimer’s Disease, Parkinson’s Disease, and Long-COVID through NRF2 Activation to Counteract the NLRP3 Inflammasome. Antioxidants (Basel), 2022. 11(1) https://doi.org/10.3390/antiox11010124.
23. Ahmed, H.M. and M. Babakir-Mina, Investigation of rosemary herbal extracts (Rosmarinus officinalis) and their potential effects on immunity. Phytother Res, 2020. 34(8): p. 1829-1837 https://doi.org/10.1002/ptr.6648.
24. Ghasemzadeh Rahbardar, M. and H. Hosseinzadeh, Therapeutic effects of rosemary (Rosmarinus officinalis L.) and its active constituents on nervous system disorders. Iran J Basic Med Sci, 2020. 23(9): p. 1100-1112 https://doi.org/10.22038/ijbms.2020.45269.10541.
25. Chen, X.L., Q.Y. Luo, W.Y. Hu, J.J. Chen, and R.P. Zhang, Abietane Diterpenoids with Antioxidative Damage Activity from Rosmarinus officinalis. J Agric Food Chem, 2020. 68(20): p. 5631-5640 https://doi.org/10.1021/acs.jafc.0c01347.
26. Chen, X., Q. Luo, W. Hu, J. Chen, and R. Zhang, Labdane and isopimarane diterpenoids from Rosmarinus officinalis solid wastes: MS/MS spectrometric fragmentations and neuroprotective effect. Industrial Crops and Products, 2022. 177: p. 114441 https://doi.org/https://doi.org/10.1016/j.indcrop.2021.114441.
27. Dovonou, A., C. Bolduc, V. Soto Linan, C. Gora, M.R. Peralta Iii, and M. Lévesque, Animal models of Parkinson’s disease: bridging the gap between disease hallmarks and research questions. Transl Neurodegener, 2023. 12(1): p. 36 https://doi.org/10.1186/s40035-023-00368-8.
28. Yasuda, D., T. Ohe, K. Takahashi, R. Imamura, H. Kojima, T. Okabe, Y. Ichimura, M. Komatsu, M. Yamamoto, T. Nagano, and T. Mashino, Inhibitors of the protein-protein interaction between phosphorylated p62 and Keap1 attenuate chemoresistance in a human hepatocellular carcinoma cell line. Free Radic Res, 2020. 54(11-12): p. 859-871 https://doi.org/10.1080/10715762.2020.1732955.
29. Wang, Z., M. Yao, L. Jiang, L. Wang, Y. Yang, Q. Wang, X. Qian, Y. Zhao, and J. Qian, Dexmedetomidine attenuates myocardial ischemia/reperfusion-induced ferroptosis via AMPK/GSK-3β/Nrf2 axis. Biomed Pharmacother, 2022. 154: p. 113572 https://doi.org/10.1016/j.biopha.2022.113572.
30. Luo, X., X. Weng, X. Bao, X. Bai, Y. Lv, S. Zhang, Y. Chen, C. Zhao, M. Zeng, J. Huang, B. Xu, T.W. Johnson, S.J. White, J. Li, H. Jia, and B. Yu, A novel anti-atherosclerotic mechanism of quercetin: Competitive binding to KEAP1 via Arg483 to inhibit macrophage pyroptosis. Redox Biol, 2022. 57: p. 102511 https://doi.org/10.1016/j.redox.2022.102511.
31. Marsh, J.M., S. Whitaker, L. Li, R. Fang, M.S.J. Simmonds, N. Vagkidis, and V. Chechik, The key phytochemistry of rosemary (Salvia rosmarinus) contributing to hair protection against UV. Int J Cosmet Sci, 2023. 45(6): p. 749-760 https://doi.org/10.1111/ics.12883.
32. Veenstra, J.P., B. Vemu, R. Tocmo, M.C. Nauman, and J.J. Johnson, Pharmacokinetic Analysis of Carnosic Acid and Carnosol in Standardized Rosemary Extract and the Effect on the Disease Activity Index of DSS-Induced Colitis. Nutrients, 2021. 13(3) https://doi.org/10.3390/nu13030773.
33. Hasei, S., T. Yamamotoya, Y. Nakatsu, Y. Ohata, S. Itoga, Y. Nonaka, Y. Matsunaga, H. Sakoda, M. Fujishiro, A. Kushiyama, and T. Asano, Carnosic Acid and Carnosol Activate AMPK, Suppress Expressions of Gluconeogenic and Lipogenic Genes, and Inhibit Proliferation of HepG2 Cells. Int J Mol Sci, 2021. 22(8) https://doi.org/10.3390/ijms22084040.
34. Lin, G., N. Li, D. Li, L. Chen, H. Deng, S. Wang, J. Tang, and W. Ouyang, Carnosic acid inhibits NLRP3 inflammasome activation by targeting both priming and assembly steps. Int Immunopharmacol, 2023. 116: p. 109819 https://doi.org/10.1016/j.intimp.2023.109819.
35. Bao, T.Q., Y. Li, C. Qu, Z.G. Zheng, H. Yang, and P. Li, Antidiabetic Effects and Mechanisms of Rosemary (Rosmarinus officinalis L.) and its Phenolic Components. Am J Chin Med, 2020. 48(6): p. 1353-1368 https://doi.org/10.1142/s0192415x20500664.
36. Warnecke, T., C. Lummer, J.W. Rey, I. Claus, and D. Lüttje, [Parkinson’s disease]. Inn Med (Heidelb), 2023. 64(2): p. 131-138 https://doi.org/10.1007/s00108-022-01444-3.
37. Nagatsu, T., A. Nakashima, H. Watanabe, S. Ito, and K. Wakamatsu, Neuromelanin in Parkinson’s Disease: Tyrosine Hydroxylase and Tyrosinase. Int J Mol Sci, 2022. 23(8) https://doi.org/10.3390/ijms23084176.
38. Kawahata, I. and K. Fukunaga, Degradation of Tyrosine Hydroxylase by the Ubiquitin-Proteasome System in the Pathogenesis of Parkinson’s Disease and Dopa-Responsive Dystonia. Int J Mol Sci, 2020. 21(11) https://doi.org/10.3390/ijms21113779.
39. Huang, T.I. and C.L. Hsieh, Effects of Acupuncture on Oxidative Stress Amelioration via Nrf2/ARE-Related Pathways in Alzheimer and Parkinson Diseases. Evid Based Complement Alternat Med, 2021. 2021: p. 6624976 https://doi.org/10.1155/2021/6624976.
40. Thiruvengadam, M., B. Venkidasamy, U. Subramanian, R. Samynathan, M. Ali Shariati, M. Rebezov, S. Girish, S. Thangavel, A.R. Dhanapal, N. Fedoseeva, J. Lee, and I.M. Chung, Bioactive Compounds in Oxidative Stress-Mediated Diseases: Targeting the NRF2/ARE Signaling Pathway and Epigenetic Regulation. Antioxidants (Basel), 2021. 10(12) https://doi.org/10.3390/antiox10121859.
41. Villavicencio Tejo, F. and R.A. Quintanilla, Contribution of the Nrf2 Pathway on Oxidative Damage and Mitochondrial Failure in Parkinson and Alzheimer’s Disease. Antioxidants (Basel), 2021. 10(7) https://doi.org/10.3390/antiox10071069.
42. Malpartida, A.B., M. Williamson, D.P. Narendra, R. Wade-Martins, and B.J. Ryan, Mitochondrial Dysfunction and Mitophagy in Parkinson’s Disease: From Mechanism to Therapy. Trends Biochem Sci, 2021. 46(4): p. 329-343 https://doi.org/10.1016/j.tibs.2020.11.007.
43. Eldeeb, M.A., R.A. Thomas, M.A. Ragheb, A. Fallahi, and E.A. Fon, Mitochondrial quality control in health and in Parkinson’s disease. Physiol Rev, 2022. 102(4): p. 1721-1755 https://doi.org/10.1152/physrev.00041.2021.
44. Lizama, B.N. and C.T. Chu, Neuronal autophagy and mitophagy in Parkinson’s disease. Mol Aspects Med, 2021. 82: p. 100972 https://doi.org/10.1016/j.mam.2021.100972.
45. Themistokleous, C., E. Bagnoli, R. Parulekar, and M.M.K. Muqit, Role of Autophagy Pathway in Parkinson’s Disease and Related Genetic Neurological Disorders. J Mol Biol, 2023. 435(12): p. 168144 https://doi.org/10.1016/j.jmb.2023.168144.