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Abstract

The  ability  to  predict  the  onset  of  labour  is  seen  to  be  an  important  tool  in  a  clinical  setting.

Magnetomyography has shown promise in the area of labour imminency prediction, but its clinical

application remains limited due to high resource consumption associated with its broad number of

channels.  In  this  study,  five  electrode  channels,  which  account  for  3.3%  of  the  total,  are  used

alongside a novel signal decomposition algorithm and low complexity classifiers (logistic regression

and linear-SVM) to classify between labour imminency due within 0–48hrs and >48hrs. The results

suggest that the parsimonious representation comprising of five electrode channels and novel signal

decomposition method alongside the candidate classifiers could allow for greater affordability  and

hence clinical  viability  of  the  magnetomyography-based prediction model,  which  carries  a  good

degree of model interpretability. 
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Introduction 

The process of expulsion of a foetus from the womb is termed as labour. Due to the complexity of

the overall process, it is desirable and imperative to be able to have a good idea as to when this is

going to occur – particularly in the case of a preterm delivery – in order for the clinicians to be able

to  commence  prompt  care  and  treatments.1–3 From  previous  studies  it  has  been  shown  that

contraction signals acquired from the uterine wall convey information that can be used to forecast a

labour  imminency  timeframe  with  greater  accuracy  than  traditional  methods.1–3 Acquired

contraction signals reflect the immediate physiological state with greater quality, and could be used

to predict a labour due period, thus presenting an additional layer of information which could serve

a decision support platform and allow for proactive care strategies for pregnant patients.1–3 These

uterine  contraction  signals  also  manifest  themselves  as  electrophysiological  signals,  which  are

typically characterised by a flow of ionic current that allows for the recording of these bioelectrical

manifestations of the contraction signals  to be done by either an electric or magnetic recording

instrumentation.4 

A  bulk  of  the  work  in  the  area  of  pregnancy  monitoring  and  has  been  done  with

electrohysterogram  (EHG),  which  acquire  bio-electric  signals  associated  with  anatomical

contractions. The limitation of this is tied to the biophysics of the propagation of electrical signals

through tissue, which attenuate due to tissue conductivities as they travel from source to receiver. 5

Due  to  the  principle  of  electrodynamics,  the  orthogonal  offset  of  these  bio-electric  signals  is

accompanied  by  a  related  magnetic  field  signal  that  can  be  acquired  using  magnetomyography

(MMG) instrumentation which, unlike EHG, is not dependent on tissue conductivities and does not

require coupling between the sensor and the surface of the uterine walls.6 A number of authors have

investigated the use of MMG for labour imminency prediction since the early work done by Eswaran

et  al.7,  who applied  the high  resolution superconducting  quantum interference device  array  for

reproductive assessment  (SARA).Where it  can be noted that  all  151channels  were used for  the



analysis process. The authors of this paper have also investigated the use of MMG across various

case studies spanning labour imminency prediction using a 0–48hrs and >48hrs prediction timeline

and an ethnic-specific labour prediction model due to the influence of ethnicity in gestation 8. The

results  from these prior  studies were seen to produce a high accuracy in  the >90% region and

produced  technical  contributions  as  148  electrode  channels  were  used.8 However,  these  prior

studies have not addressed ways in which the instrumentation can increase its appeal by dropping

the  overall  cost,  which  has  been  seen  to  be  a  crucial  factor  in  the  clinical  adoption  of  the

instrumentation.8  

Two of the primary sources of the cost associated with the MMG instrumentation include

the need for electromagnetic shielding due to its susceptibility to magnetic interferences and its

associated  broad  number  of  channels.9 A  workaround for  the  magnetic  shielding  could  involve

hardware modifications where materials  which minimise magnetic field interferences from fields

outside its  primary  source could  act  as  an insulation,  while  an exercise  on the application of  a

decomposition algorithm – which can aid in the maximisation of the signal quality produced by each

electrode channel – could be looked at as a means of investigating how a low number of electrodes

could lead to a parsimonious yet robust approach towards the acquisition of MMG signals from a

pregnant patient. 

Nsugbe et al.10–16 have previously designed a decomposition algorithm which was initially

used for the source separation of a mixture given an acquired non-stationary time domain signal.

This decomposition is done using a series of linear thresholds of varying amplitudes as the basis for

the decomposition, alongside heuristic reasoning which promotes the flexibility of the approach to

be adapted to different signal processing problems.10–16 The approach has recently been trialled on

the decomposition of neuromuscular signals from electromyography for phantom motion decoding

and brain waves from electroencephalography for motor imagery decoding, in the application area

of upper-limb prosthesis control.16 During that study, its performance was also seen to surpass the

wavelet transform from both a decoding accuracy perspective and in computational efficiency. 16,17

The  results  from  this  showed  the  promise  of  the  designed  approach  towards  effective

decomposition of physiological signals which, like the signals from the original application (mixture

signals), have been seen to be stochastic and non-linear.16,17

In this paper, the focus is on the investigation of a decomposition method which can be used

to enhance the signal  quality  and lead to a parsimonious electrode selection,  driving down the

overall  instrumentation cost in the process. We evaluate the feasibility  of the application of the

proposed signal decomposition method towards enhancing the quality of signal acquired from an

MMG electrode channel for labour prediction imminency, using MMG signals available from the

Physionet database.18 Specifically speaking, the following are the main contributions of this paper:

 

- Application of a designed signal decomposition algorithm on MMG signals to allow for a

reduced channel configuration and therein contribute towards potentially reducing the cost

of the instrumentation;

- Showcasing  the  feasibility  of  a  reduced  feature  extraction and  low complexity  classifier

towards  labour  imminency  prediction,  which  would  ultimately  enhance  model

interpretability and overall clinical appeal.

Materials and Methods

MMG Dataset



The MMG dataset used was downloaded from the publicly available Physionet database 18, which

hosts the MMG signals acquired using the  151 channel SQUID Array for Reproductive Assessment

(SARA), and is located at UAMS, Little Rock, USA. The dataset comprised of 25 patients, all of whom

were in  their  third  trimester,  delivered in  a mixture  of  term and preterm,  and whose ethnicity

spanned  Caucasian, Black and Hispanic.18 The data was separated into two classes:  i)  data from

patients who delivered within 48 hours, and ii) data from patients who delivered over 48 hours from

when the data was collected.8,18 The data was initially  acquired at  a  rate of  250Hz,  then down-

sampled to 32Hz: further details on the acquisition instrumentation and method can be seen on the

Physionet database.8 An illustration of the acquisition of the MMG field signal can be seen in Figure

1. Due to errors encountered while downloading the dataset, 22 patients’ data were used for final

analysis.

        

Figure 1: Acquisition of MMG field signals4

MMG Theoretical Principle

Ionic  flow in  biological  tissue  is  seen  to  be  accompanied  by  a  perpendicular  magnetic  field,  as

deduced in the seminal work by Maxwell4,6. The governing equations underpinning the propagation

of electromagnetic signals within the uterus during pregnancy can be approximated with the quasi-

static versions of Maxwell’s equations, with the assumption of a linear model as follows4,6:

∇ x E=0   (1)

∇ . E=
ρ
ε 0  (2)

∇ .B=μ0 J (3)

∇ .B=0 (4)

E and B are the electrical and magnetic fields,  ε 0 and μ0 are the permittivity and permeability of
free space respectively, and  ρ and J  are the current and charge density. Given a situation with
continuous current flow, the Biot-Savart’s law which encapsulates the behaviour of a magnetic field
from an electric source, can thus be used to estimate the magnetic field as seen in equation 54:

B (r )=
μ0
4 π

∫
J (r ' ) x l

l3
dv '  (5)



l=r−r '  is  a vector  from the source  r '  to a point  of  observation of  magnitude  ¿||l||2,  and  J (r ' )

represents the current density from the source. Re-expressing the ratio of l / l3 as −∇( 1l )=∇ '(
1
l ),

equation 5 can thus be redefined as follows4,6:

          B (r )=
μ0
4 π

∫ J (r ' ) x∇ '
l
l
dv '

In a scenario where there is rapid current density dissipation (6) can be reformulated as:

       B (r )=
μ0
4 π

∫
∇
' xJ (r ' )
l

dv '   (7)

With the superposition principle, a linear can be established between the magnetic field B and an
accompanying source current density J p, which thus allows for the computation of the potential V
as below4,6:

B (r )=
μ0
4 π

∫ (J p ( r ' )+V ( r ' )∇ 'σ (r ' )) x l
l3
dv '   (8)

A full list of the derivation used to obtain equation (8) can be seen in Zhang et al.4

Signal Processing

Signal Decomposition Algorithm

For a given non-stationary time-series comprising a single event of a unit impulse accompanied by a

decay, s (t )=e−at u (t )+ζ  for u ( t )={0 ,∧a<01,∧a≥0
, the time-series can be characterised by the magnitude

of its impulse alongside temporal characteristics, where, u (t ) is a step function, t is the impulse time,
and a is an indication value which shows that the function is 0 until a≥0, and ζ  is an additive white
noise. When consecutive events occur within the time-series, an overlap can be seen which causes
the associated impulse decay characteristics to be challenging to localise  10–16.  Thus in reality the
amplitude  characteristics  represent  a  source  of  information  which  can  be  used  to  model  and
describe certain time series as described by Nsugbe et al.10–16. Thus, for a non-stationary stochastic
time-series,  an  optimal  region  within  a  given  time-series  is  one  in  which  signal  information  is
maximised,  and  associated  uncertainties  are  minimal,  as  can  be  inferred  from  the  amplitude
characteristics of the signal peaks within the time-series.10–17

The proposed method works with a series of heuristically tuned linear threshold as a basis
for the decomposition alongside a peak identification method, to decompose a time-series into a
number of sub time-series.10–17 The obtained optimal decomposition region within the time-series
can  be  described  by  its  parameters  in  time  and  space.  The  corresponding  variables  for  these
parameters are referred to as X opt

 and represent the region within the signal which all subsequent
time-series should be analysed, as this has been seen to generalise across all subsequent signals
acquired from the source, providing the signal acquisition instrumentation remains unchanged. The
decomposition method can be seen to represent a first stage dimensionality reduction stage which
will pay dividends in the reduced computational load during the feature extraction stage.

Below are the steps taken to implement the proposed signal decomposition method and
identify the optimal region within a given time-series: Sn= x1, x2… .. xN  transformed to its absolute

form |Sn|: 



Step 1: Set an initialisation threshold for |Sn|. In this work, this was chosen to be 50% of max|Sn|,

although this  is  flexible and has  been seen to be an  a priori value in  a previous study.10–16 The

application of  the initialisation threshold to the time-series  would yield a set  of  sub time-series

X={X 11,X12} where X11 is a sub time-series corresponding to the upper portion of the initialisation

threshold,  and  X12 is  a  sub  time-series  corresponding  to  the  lower  portion  of  the  initialisation

threshold.

Step 2: For every sub time-series in X , form a new set X filt={X11 filt ,X12filt} by identifying the peaks

within each sub time-series, where the definition of a ‘peak’ is a data sample with amplitude greater

than  or  equal  to  its  nearest  neighbours,  and  is  mathematically  expressed  as

Sn . peaks(x)={x peak .n , xn≥xn−1∧¿∧¿∧xn+1
0 ,Otherwise

Once peaks are identified, a performance index is to be conducted to assess the ‘goodness’ of each

obtained sub time-series. For this, two candidate time-series from separate classification classes are

required (i.e. 0–48hrs and >48hrs), and the respective candidate time-series needs to have been

processed  through  Steps  1  and  2  beforehand,  to  produce  X filtclass1
={X11¿,

X12filt
class 1

}  and

X filtclass2
={X11¿,

X12 filt
class 2

}. Features, mean of the peaks (MP) and waveform length (WL) were extracted

from each sub time-series to form a feature vector. A geometric based performance index  J  was

chosen to be the Euclidean distance,19 normalised by the standard deviation of each time-series in

question, as expressed in equations 9–11 for an example exercise constituting of sub time-series X11 ¿

and X11¿

ED (p ,q )=√¿¿¿  (9)

σ=√∑
w=1

N w

¿¿¿¿      (10)

J= (p ,q )=
ED ( p ,q )

σm
  (11)

ED is  the  Euclidean  distance,  p and  q are  co-ordinates  of  the  features  in  the  feature  vector

projected in a Euclidean space, w is the wth feature, Nw
, rw  is a feature within the feature vector, μ

is the mean of the feature vector, and σ m is the mean of the standard deviations from the two time-

series. The computed value for  J  should be stored in an array and be used for a maxima seeking

exercise at a later stage.

In order to promote consistency, it is important to note that J  should only be calculated for

equivalent threshold regions and iterations pairings, for a true reflection; i.e., {X xy¿

 and X xy¿
}. 

Step  3:  Subsequent  decomposition  of  X11 filt(upper threshold),∧X 12filt ( lower threshold),  this  time  using  a  separate

threshold tuning heuristic and scale factor as defined below:

Upper threshold decomposition parameters alongside iteration numbers:

T l¿=50%of max|Sn|, T l¿=
T l¿
2

+T l¿
, T l¿=

T l¿
2

+T l¿
,……….. T l¿=

T l¿−1
2

+T l¿−1
  (12)

Lower threshold decomposition parameters alongside iteration parameters:



 T l¿=50%of max|Sn|,T l¿=
T l¿
2

,T l¿=
T l¿
2

…………T l¿=
T l¿−1
2

 (13)

For every subsequent decompositions of X11 filt(upper threshold),∧X 12filt( lower threshold), only the time-series peaks

above the re-tuned upper thresholds are considered for subsequent analysis in the case of the upper

threshold,  while  for  the  lower  threshold  only  the  time-series  peaks  below  the  re-tuned  lower

thresholds are considered for subsequent analysis. This structure has been determined as a means

of best practice and should be repeated for any further threshold iterations.10–16

The stopping criteria for the iterations was chosen for when the number of peaks within the

threshold iteration was less than the number of samples required for the computation of some of

the features required to be subsequently extracted from the signal. Note that the algorithm stopping

criteria is flexible and adds a degree of freedom to the decomposition algorithm, which allows for it

to be adapted to suit the case study at hand. 

Step 4: A maxima seeking exercise20 from both threshold regions where Jmax (upper threshold )and

Jmax (lower threshold) are identified and the ultimate maximum from the pair is selected as Joptimal.
The  associated  threshold  used  to  obtain  this  is  stored  as  X opt , thus  referring  to  the  optimal

decomposition parameters to be used for subsequent signal decomposition from the same source.

An illustration showing the various steps used to find the optimal decomposition region within the

signal can be seen in Figure 2.

Figure 2: Visual illustration of the signal decomposition approach

Feature Extraction

Two groups of features were used for the classification exercises. Group 1 features comprised a

reduced set of features whereas Group 2 features comprised the full list of features used in previous

work.21–24

Group 1 Features:  MP,  WL,  slope sign change (SSC),  root mean squared (RMS),  sample entropy

(SampEN), Cepstrum (Ceps), maximum fractal length (MFL), median frequency of power spectrum

(MF), simple squared integral (SSI) and variance (VAR).

X xyX21

T l¿

T l¿

T l¿

T l¿T l¿

T l¿
X12

X11

Threshold scaling

directions

Identified peaks 

below threshold

Identified peaks 
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X xyX22



Group 2 Features: MP, WL, SSC, RMS, SampEN, Ceps, MFL, MF, SSI, VAR, 4th order auto-regression

co-efficient  (AR),  Higuchi  fractal  dimension  (HFD),  detrended  fluctuation  analysis  (DFA),  peak

frequency (PF), sum of peaks (SP).

SMOTE

The  SMOTE  algorithm  was  applied  to  increase  the  amount  of  training  examples  and  for  class

balancing. The nearest neighbour parameters were selected to be 5, while k was 2.7 for class 1, and

5 for class 2 for the sample generation process.25 

Classifiers

Two classifiers were selected for the classification exercises, namely the logistic regression (LR), and

linear support vector machine (L-SVM).26–28 LR was chosen due to its low model complexity thus

classification  decision  transparency,  while  the  SVM  is  an  iterative  classifier  with  a  bit  more

complexity but a linear kernel was chosen to help minimise overfit and reduce complexity.26–28 

- LR: for a binary decision defined by the set Y ∈ {0,1 }, a generalised function parametrised

by θ can be used to approximate values for Y  as follows26:

hθ (X )=
1

1+e−θ
T X

=Pr (Y=1|X i;θ )/Pr (Y=0|X i ;θ )=1−hθ (X ) (14)

Where  X i is  an input.  For an independently Bernoulli-distributed observation,  the log likelihood

function can be expressed as:

L (θ|y ;x )=Pr (Y|X ;θ ) (15)

∏
i
Pr ( y i|x i;θ ) (16)

∏
i

hθ (xi )
y i (1−hθ (xi ) )

(1− y i)
  (17)

where x i is a data sample and y i is an approximated output.

- L-SVM: given a feature vector x , the SVM solves an optimisation problem as follows27,28:

min
1
2
w tw+R∑

i=1

N

ζ i  (18)                   w ,b ,ζ  

 s . t . y i (w
TΦ (x i )+b )≥1−ζ i ,   ζ i≥0 ,i=1,…, N

Where ζ  is a slack variable, R is a regulariser and y  is an indication vector. The parameters used for

the SVM implementation of the linear kernel are expressed as  k (x i , x j )=xi
T x j with a one-vs-one

multiclass method.

Results

To demonstrate the effectiveness of the proposed approach, only the first five electrode channels

which were arbitrarily chosen were used for signal processing work, which represents 3.3% of the

total electrode channels. To assess the performance of the classifier, four select classifier metrics



were employed; namely the classification accuracy (CA), sensitivity (Sen), specificity (Spec) and area

under the curve (AUC).29 Below are the values obtained for J  prior to the fulfilling of the algorithm

stopping criteria, where the maximum was found to be upper threshold region at the third iteration. 

Results from upper threshold decompositions can be seen below:

T l¿=1.906, T l¿=2.291, T l¿=2.628

Results from lower threshold decompositions can be seen below:

 T l¿=0.237,T l¿=0.489,T l¿=0.776

The results from the LR and L-SVM classifiers can be seen in Figures 3 and 4 respectively. The result

for the proposed method (bar 1) is around 90% (except for sensitivity), which is about 20% greater

than the other two methods being contrasted.

Figure 3:  Classification results for LR classifier, Top Left-CA, Top Right-Sen, Bottom Left-Spec, and

Bottom Right-AUC

Input Feature Type for LRInput Feature Type for LR

Input Feature Type for LRInput Feature Type for LR

1. Proposed signal decomposition 

method + Group 1 features

2. Group 1 features

3. Group 2 features



Figure 4: Classification results for L-SVM classifier, Top Left-CA, Top Right-Sen, Bottom Left-Spec, and

Bottom Right-AUC

The same trend continues in the case of the L-SVM where the results from the proposed methods

are  superior  to  its  counterparts,  albeit  with  a  slightly  lower  performance  overall  than  the  LR,

implying the compatibility of the proposed method with regression-based classifiers. The effects of

additional features (bar 3) are more pronounced in the case of the L-SVM where an increase in the

specificity is observed, which contributed to yield a greater AUC value.

A  visualisation  of  the  respective  clusters  from  the  two  classes  can  be  seen  from  the  principal

component  analysis  (PCA)  plot  with  the  first  two  principal  components  shown  in  Figure  5.30 A

qualitative assessment of the PCA plot from the proposed method shows highly linear projections of

the data clusters, while the subsequent two show more variability, scatter and overlap associated

with  their  projections.  The  presence  of  additional  features  can  be  seen  to  enhance  the  class

separability of the data points when plots 2 and 3 are contrasted, but the scatter associated with

their  projections  remain.  Thus,  it  can  be  said  that  the  proposed  signal  decomposition  method

promotes compact linear projections with a reduced variability,  and therein the effectiveness of

linear  decision  boundaries,  while  the  inclusion  of  additional  features  enhances  the  separability

between clusters in feature/Euclidean space.

Input Feature Type for L-SVM Input Feature Type for L-SVM

Input Feature Type for L-SVMInput Feature Type for L-SVM



Figure 5:  PCA results  plots:  Left) Results  using novel  signal  decomposition method and Group 1

features; Middle) Results without signal decomposition and Group 1 features; Right) Results without

signal decomposition and Group 2 features

Conclusions

In this paper, a highly reduced channel electrode channel selection comprising 3.3% (5 out of 151

channels) of the original electrode segments, alongside a novel decomposition algorithm and low

order  classifiers  have  been  combined  to  form  a  parsimonious  method  of  labour  imminency

prediction using  MMG.  This  idea  of  parsimony  promotes  reduced  cost,  computational  load and

transparency of the decision-making process of the model, and will contribute towards the overall

clinical appeal and viability of the full system architecture. Further work in this area will involve the

identification of  norms and statistical  features  which can  contribute  towards  greater  accuracies

using the candidate classifiers.
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